
Mathematics for Physics: Additional Notes

August 17, 2022

Primed indices

p40, 130, 162, 232, 240, 254: When components of an intrinsic quantity change under a primed frame, the more
accurate notation is e.g. (vµ)

′ instead of v′µ, since it is the components that are changing, not the vector itself. In
contrast, under a change of frame the frame vectors themselves do change, making the more accurate notation e′µ.

Morphisms

p3, 1.2 Defining mathematical structures and mappings: In category theory, morphisms have generalized definitions
which can in some cases be distinct from the ones we give, which are common in abstract algebra.

Generalizing numbers

p6, 2.1 Generalizing numbers: The abelian group of positive reals under multiplication (isomorphic to the reals under
addition via the logarithm) is often denoted R+ or R×; both can be potential sources of confusion since the first
might seem to imply the operation is addition, and the second does not explicitly signify that the elements must be
positive (or alternatively non-zero).

Groups

p6-7, 2.1.1 Groups: Any permutation can be obtained from a composition of transpositions, or element exchanges;
these transpositions are not unique, but the evenness or oddness (parity) of their number t is, and the sign of the
permutation is defined as (−1)t.

Rings

p8, 2.1.2 Rings: A ring without unity is called a rng (“ring without the i”).

Modules

p9-10, 2.2 Generalizing vectors:

• To be explicit, for a right module, the given scalar multiplication rules are modified.

• Any unital ring R can itself be viewed as a R-module.
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Vector spaces and complexification

p10, 2.2 Generalizing vectors:

• Bases generate a matrix for any vector space homomorphism (linear map), a particular one being a change of
basis.

• The complexification of a real vector space can also be denoted V C.

• Decomplexification is also called realification.

• Given a 2n-dimensional real vector space U , one can define a complex structure on U , defined to be a
linear transformation J : U → U that squares to the negative identity; a basis for U is then {eµ, J (eµ)}, which
determines an n-dimensional complex vector space W J with basis eµ.

Inner products

p11, 2.2.1 Inner products of vectors:

• Another term for anti-linear is conjugate-linear.

• An inner product as we have defined it on a complex vector space is also called a Hermitian inner product,
and a complex inner product space is sometimes called a Hermitian inner product space, Hermitian space, or
unitary space.

• Every finite-dimensional real or complex inner product space is isomorphic to Rn or Cn with their standard
inner products as defined, and 〈v, v〉 yields the same real value when applied the complex vector v ∈ V or the
decomplexified real vector in V R.

• The vectors orthogonal to a light-like vector in a Lorentzian signature are scalar multiples of itself and the
space-like vectors orthogonal to its space-like component. This shows that the concept of an orthogonal
complement (which together with the original subspace comprises the entire space) is not applicable to pseudo
inner products.

• The definitions of pseudo inner product and signatures should have been put into this section, not the section
on multilinear forms.

• The real quantity
√
±〈v, v〉 is also sometimes called the “length” of v.

• The invariance of signature under a change of basis is known as Sylvester’s law of inertia.

Norms

p12, 2.2.2 Norms of vectors:

• The polarization identity can be written multiple ways:

〈v, w〉 =
1

4

(
‖v + w‖ 2 − ‖v − w‖ 2

)
=

1

2

(
‖v‖ 2 + ‖w‖ 2 − ‖v − w‖ 2

)
=

1

2

(
‖v + w‖ 2 − ‖v‖ 2 − ‖w‖ 2

)
.

• Note that the parallelogram and polarization identities, which only involve the squared norm ‖v‖2 = 〈v, v〉,
also hold for a pseudo inner product.

• Complex normed vector spaces are defined identically, but satisfy a different polarization identity

〈v, w〉 =
1

4

(
‖v + w‖ 2 − ‖v − w‖ 2 + i ‖v − iw‖ 2 − i ‖v + iw‖ 2

)
.
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• Comparing the polarization identities immediately identifies the real part of the complex inner product as just
the real inner product defined by the orthonormal basis in the decomplexification V R, i.e. Re (〈v, w〉C) = 〈v, w〉R.
The imaginary part is then the inner product of vectors Im (〈v, w〉C) = 〈v,−iw〉R = 〈iv, w〉R in V R. Note that
both parts vanish for vectors in different complex planes, but for vectors in the same complex plane Im (〈v, w〉)
acts as a sort of “inverse” inner product on the vectors in V R: it vanishes if they are a real multiple of each
other (parallel in V R), and is the squared norm for vectors related by an imaginary factor (orthogonal in the
decomplexified complex plane), i.e. Im (〈iv, v〉C) = 〈v, v〉R. As we see later, Im (〈v, w〉) is a symplectic form on
V R.

• In a real inner product space, we can define the angle between vectors by cos θ ≡ 〈v, w〉 / (‖v‖ ‖w‖). If
we then decompose v into components parallel and orthogonal to w, the parallel component is called the
orthogonal projection of v onto w, and has length v‖w = 〈v, w〉 / ‖w‖ = ‖v‖ cos θ. In a complex vector space
V , taking the real part of the cosine defines the Euclidean angle cos θE ≡ Re (〈v, w〉) / (‖v‖ ‖w‖), which is the
angle between the vectors in the decomplexification V R; the orthogonal projection of v onto w in V R is then
v‖w = Re (〈v, w〉) / ‖w‖ = ‖v‖ cos θE.

• For two vectors in a single complex line in V , called a holomorphic plane in V R, we may write sin θE ≡
Im (〈z, u〉) / (‖z‖ ‖u‖), so that the component of z orthogonal to u is z⊥u = Im (〈z, u〉) / ‖u‖. In the more
general case, two arbitrary complex vectors (assumed to be non-parallel in V R) have a Kähler angle defined
by cos θK sin θE ≡ Im (〈v, w〉) / (‖v‖ ‖w‖). cos θK is dependent only upon the plane in V R defined by the two
vectors, and is unity if this plane is holomorphic, while vanishing for vectors in orthogonal complex lines.

Figure 1: In the holomorphic plane defined by eR1 and eR2 , the real part of the complex inner product 〈z, u〉 determines the
parallel component z‖u (the orthogonal projection), while the imaginary part determines the orthogonal component z⊥u; these
can also be expressed in terms of the Euclidean angle as z‖u = ‖z‖ cosϕE and z⊥u = ‖z‖ sinϕE. For two vectors v and w
with an extra component in a direction orthogonal to the holomorphic plane, the Kähler angle is the angle between the vw
plane and the holomorphic plane. We can see this in the figure by noting that since the eR3 components of the vectors are
parallel, the imaginary part of 〈v, w〉 does not include any contribution from this component. In the holomorphic plane, v has
no imaginary component, so we have Im 〈v, w〉 = v1w2 = ‖v‖ cos θK ‖w‖ sin θE, the defining relation for the Kähler angle. This
geometric view of the Kähler angle as the angle between planes remains valid if the line of intersection between the planes is
not along the imaginary axis, or if v has an imaginary component; but for vectors with components in multiple holomorphic
planes, the situation is more complicated.

• Finally, taking the modulus of the cosine defines the Hermitian angle cos θH ≡ |〈v, w〉| / (‖v‖ ‖w‖), where
vC‖w = ‖v‖ cos θH is the (complex) orthogonal projection of v onto w. The pseudo-angle is then defined by
〈v, w〉 ≡ |〈v, w〉| eiθP . For two vectors in the same holomorphic plane, the Hermitian angle thus vanishes along
with the Kähler angle, while the pseudo-angle is just the Euclidean angle.
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4 It is important to remember that a Euclidean angle of π/2 does not ensure a vanishing complex inner product,
and that parallel vectors in a complex V may be orthogonal using the corresponding real inner product in V R.

Symplectic forms

p15, 2.2.4 Orthogonality of vectors:

• A vector space along with a symplectic form is called a symplectic vector space. Every finite-dimensional
symplectic vector space is isomorphic to R2n under the standard symplectic form

J =

(
0 I
−I 0

)
(where Jµν ≡ J (eµ, eν) and I is the identity matrix), which is then isomorphic to Cn under the imaginary part
of the complex inner product.

• The requirement of even dimension can be seen by considering nondegeneracy in light of the determinant of
the matrix form.

Algebras

p16, 2.2.5 Algebras: multiplication of vectors: the universal enveloping algebra is infinite dimensional.

p17, 2.2.6 Division algebras:

• Note that the norm via the conjugate implies two sided inverses for all normed real division algebras, namely
v−1 = v∗/ ‖v‖2.

• It turns out that any subalgebra of O generated by two elements is associative.

Tensor product

p21, 2.3.3 The tensor product: The list of isomorphisms at the end of the section are as real algebras. Complexification
is equivalent to tensoring with the complex numbers, i.e. V C ∼= V ⊗ C, so the first isomorphism can be viewed as
the complexification of C as a real algebra. An explicit isomorphism is a(1 ⊗ 1) + b(i ⊗ 1) + c(1 ⊗ i) + d(i ⊗ i) 7→
((a+ d) + i(b− c), (a− d) + i(b+ c)), or in the reverse direction (z, w) 7→ z

2 (1⊗ 1 + i⊗ i) + w
2 (1⊗ 1− i⊗ i). Note

that the original algebra is thus embedded as a + ib 7→ (a + ib, a + ib). We can then apply this isomorphism to
each matrix element in C(n) as a real algebra to get C(n)C ∼= C(n)⊗C ∼= C(n)⊕C(n), where again uncomplexified
elements are mapped as v 7→ (v, v).

Vector algebras

p27, Chapter 3 Vector algebras: Although noted in Section 3.1, the assumption that vector spaces are finite dimen-
sional and real applies to the entire chapter.

Combinatorial notations

p30-31, 3.1.3 Combinatorial notations:

• The permutation symbol is defined in terms of parity to be +1 for even index permutations, −1 for odd, and
0 otherwise.
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• The generalized Kronecker delta

δν1···νkµ1···µk ≡
∑
π

sign (π) δ
νπ(1)
µ1 · · · δνπ(k)

µk

gives the sign of the permutation of upper versus lower indices and vanishes if they are not permutations or
have a repeated index. We can then relate this to the permutation symbol:

δν1···νkµ1···µk =
1

(n− k)!
εν1···νkλk+1...λnεµ1···µkλk+1...λn

⇒ ελ1···λnελ1...λn = n!

• The norm of the exterior product of vectors vµ = Mν
µêν is the absolute value of the determinant of the matrix,

which equals the volume of the parallelepiped defined by the vectors if the basis is orthonormal.

• Since the specific vectors in P = v1 ∧ v2 ∧ · · · ∧ vk can have many values without changing P itself (e.g.
v ∧ w = (v + w) ∧ w), a more accurate visualization might be the oriented subspace associated with the
parallelepiped along with a basis-independent specification of volume. In particular, the change of basis formula
above means that given any pseudo inner product, P can always be expressed as the exterior product of k
orthogonal vectors.

Hodge star

p33, 3.1.4 The Hodge star: The first print edition of the book uses the definition A ∧ C = 〈∗A,C〉Ω for A ∈ ΛkV ,
C ∈ Λn−kV , which prefixes our current Hodge star by the factor (−1)s. To be consistent with most physics texts
our current Hodge star is defined such that for any A,B ∈ ΛkV we have

A ∧ ∗B = 〈A,B〉Ω.

From this we immediately obtain
A ∧ ∗A = 〈A,A〉Ω.

For Â ≡ ê1 ∧ · · · ∧ êk and Ĉ ≡ êk+1 ∧ · · · ∧ ên, we then have ∗Â =
〈
Â, Â

〉
Ĉ. For n-dimensional V with unit n-vector

Ω and pseudo inner product of signature (r, s) we have:

• ∗Ω = (−1)
s ⇒ (∗C) Ω = (−1)

s
C if C ∈ ΛnV

• ∗1 = Ω⇒ 〈∗a,Ω〉 = (−1)
s
a if a ∈ Λ0V

• ∗ ∗A = (−1)
k(n−k)+s

A = (−1)
k(n−1)+s

A, where A ∈ ΛkV

• A ∧ ∗B = B ∧ ∗A if A,B ∈ ΛkV

• ∗ (A ∧ ∗B) = 〈A ∧ ∗B,Ω〉 = (−1)s 〈A,B〉 if A,B ∈ ΛkV

Graded algebras

p34, 3.1.5 Graded algebras: For clarity we should explicitly say that we will assume gradation weights take integer
values.
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Clifford algebra Hodge star

p35, 3.1.6 Clifford algebras: With the new Hodge star definition we have

∗A = (−1)
k(k−1)

2 AΩ,

and the following updated table:

(2, 0) (3, 0) (3, 1) (1, 3)

∗v vΩ = −Ωv vΩ = Ωv vΩ = −Ωv vΩ = −Ωv

∗B −BΩ = −ΩB −BΩ = −ΩB −BΩ = −ΩB −BΩ = −ΩB

∗T −TΩ = −ΩT −TΩ = ΩT −TΩ = ΩT

Table 0.1: The Hodge dual in terms of Clifford products in common signatures.
Notes: here we have v ∈ V, B ∈ Λ2V , and T ∈ Λ3V .

Geometric algebra Hodge star

p37, 3.1.7 Geometric algebra: With the new Hodge star definition we have ∗A = ÃΩ.

Musical isomorphisms

p39, 3.2.1 The structure of the dual space:

• It is important to remember that when the inner product is not positive definite, the signs of components may
change under these isomorphisms.

• If the components are in terms of an arbitrary (non-orthonormal) basis, then as we see in a subsequent section,
the components change their values as well, since ηλµ is replaced by the metric tensor in the above analysis.

• The view of a 1-form as a projection requires a positive definite inner product.

• The explanation of the depiction of 1-forms as “receptacles” is better placed here than in Section 6.3.3, The Lie
derivative of an exterior form.

• When depicting ϕ as changing linearly, the length L of the 1-form representation changes more generally like
L 7→ L/(1 + rε) for some scaling factor r, while a linearly changing vector representation would change like
L 7→ L(1 + rε).

Another common graphical device is to represent ϕ as a density of “surfaces” where the value of ϕ(v) is the number
of surfaces “pierced” by the arrow. Figure 2 covers some non-intuitive aspects of these visualizations.



7

Figure 2: Depicting a 1-form ϕ as the associated vector ϕ⇑ or as a density of surfaces has consequences that can be non-
intuitive. When orthogonality corresponds to right angles in a figure, an orthonormal basis and its dual basis appear as
identical arrows; in the figure, we see that for a non-orthonormal basis, the dual basis does not appear to either be parallel
to the basis or to have identical lengths. We also see that quadrupling the value of the 1-form means quartering its length in
the figure, or equivalently quadrupling the density of surfaces pierced by arrows. This means that when depicting a linearly
changing 1-form as above, the length L of the associated vector changes like L 7→ L/(1 + rε) for some scaling factor r, which
doesn’t appear linear as a vector representation would, whose length changes like L 7→ L(1 + rε).

Tensors

p40, 3.2.2 Tensors:

• A tensor of type (k, 0) is called a contravariant tensor, with covariant tensors being of type (0, k), and
other tensor types being called mixed tensors.

• The meanings of tensor rank and order are often swapped. Another potential source of confusion is that a
mixed tensor is not the opposite of a pure tensor.

Abstract index notation

p42, 3.2.4 Abstract index notation:

• Taking the tensor direct product of two tensors and then contracting all opposite indices is also called the
contraction of the two tensors, i.e. the contraction of Sabc and Tdef is Ccf = SabcTabf .

• gab is called the dual metric tensor (AKA conjugate metric tensor), and the more directly derived relationship
showing the consistency of index raising and lowering is gabgacgbd = gcd, not gab = gacgbdgcd. gabgab is equal
to the dimension of V .

• The contraction of any two symmetric indices with any two anti-symmetric indices vanishes, e.g. if the (first)
second tensor is (anti) symmetric in the first two indices then

SabcTabd = −SbacTbad = −SabcTabd,

where in the last step we relabel “dummy” indices summed over. Similarly, any tensor with overlapping anti-
symmetric and symmetric indices vanishes, e.g. if the (first) second two indices are (anti) symmetric then

T abc = −T bac = −T bca = T cba = T cab = −T acb = −T abc.

• Only tensors of order 2 are the sum of symmetrized and anti-symmetrized tensors.
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Tensors as multi-dimensional arrays

p43, 3.2.5 Tensors as multi-dimensional arrays: Note that the initial expression means that in terms of the tensor as
a multilinear mapping we have

Tµ1...µm
λ1...λn = T (βµ1 , · · · , βµm , eλ1

, · · · , eλn) .

4 It is important to remember that a tensor Tµν or Tµν can be written as a matrix of scalars, but linear
algebra operations only are valid for linear operators Tµν . A similar source of potential confusion is that the
(anti-)symmetry of Tµν or Tµν is basis independent, while that of Tµν is not.

As a component matrix, the metric tensor satisfies gµλg
λ
ν = gµλgλν = gµν = δµν = I, hence the dual metric tensor

gab is also called the inverse metric tensor. Recalling the transformation of the top exterior product of basis
vectors from the section on combinatorial notations, we can derive an expression for the unit n-vector in an arbitrary
basis eµ = Mν

µêν of the same orientation by using the component array of a metric of signature (r, s) in that basis:

gµν = g (eµ, eν)

= g
(
Mλ

µêλ,M
σ
ν êσ
)

=
∑
λ

Mλ
µM

λ
νg (êλ, êλ)

=
(
MT M̃

)
µν

⇒ det (g) = det
(
MT M̃

)
= ± (det (M))

2

⇒ e1 ∧ · · · ∧ en =
√
|det (g)| ê1 ∧ · · · ∧ ên

⇒ β̂1 ∧ · · · ∧ β̂n =
√
|det (g)| β1 ∧ · · · ∧ βn

Here M̃ is M with negative entries for every row λ where g (êλ, êλ) = −1, whose determinant is thus changed by a
sign when s is odd.

4 It is important to remember that the element gµν is the entry in row µ and column ν of the inverse of the
component matrix gµν ; in particular, gµνgµν = r + s 6= 1.

4 It is important to remember that det (g) is the determinant of the matrix with element gµν in row µ and
column ν.

4 The symbol g is frequently used to denote det(g), and sometimes
√
|det(g)|, in addition to denoting the metric

tensor itself.

Exterior forms as completely anti-symmetric tensors

p45, 3.3.2 Exterior forms as completely anti-symmetric tensors: Also note that this isomorphism between the exterior
product and the tensor product can be similarly used to identify the exterior product of vectors with a completely anti-
symmetric contravariant tensor. In the following section we identify exterior forms with lower index anti-symmetric
arrays; we can similarly identify the exterior product of vectors with upper index anti-symmetric arrays.
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Exterior forms as anti-symmetric arrays

p46, 3.3.3 Exterior forms as anti-symmetric arrays: The equality of form and tensor arrays under our conventions is
more clearly written without recourse to the shared linear mapping view, i.e.

ϕ 7→ 1

k!
ϕµ1...µk

∑
π

sign (π)
⊗
i

βπ(i) = ϕµ1...µkβ
µ1 ⊗ · · · ⊗ βµk

This means that as with tensors, in terms of the k-form as a multilinear mapping we have

ϕµ1...µk = ϕ (eµ1
, · · · , eµk) .

In particular, for an n-form we have

ϕ = ϕ1...nβ
1 ∧ · · · ∧ βn

= ϕµ1...µnβ
µ1 ⊗ · · · ⊗ βµn

⇒ ϕ (eµ1
, · · · , eµn) = ϕµ1...µn .

Since exterior forms are built from only the dual space V ∗, in this context we will also use the symbol Ω to refer to
the unit n-form. In an arbitrary basis we can then write

Ω =
√
|det (g)| β1 ∧ · · · ∧ βn

=
√
|det (g)| ε1...nβ

1 ∧ · · · ∧ βn

=
√
|det (g)| εµ1...µnβ

µ1 ⊗ · · · ⊗ βµn ,

where εµ1...µn ≡
√
|det (g)| εµ1...µn is therefore the array of a tensor, sometimes called the Levi-Civita tensor.

The component array expression for the exterior product of a j-form ϕ and a k-form ψ is then

(ϕ ∧ ψ)µ1···µj+k =
1

j!k!
ϕν1···νjψνj+1···νj+kδ

ν1···νj+k
µ1···µj+k .

In particular, for two 1-forms we have
(ϕ ∧ ψ)µν = ϕµψν − ϕνψµ.

4 A potential source of confusion is that using abstract index notation one may write ϕa ∧ ψb, but
(ϕa ∧ ψb) vawb 6= ϕav

a ∧ ψbwb = ϕav
aψbw

b.

The component expression for the inner product of two k-forms is

〈ϕ,ψ〉form =
1

k!
ϕµ1...µkψ

µ1...µk ,

and that of the Hodge star of a k-form is

(∗ϕ)µk+1...µn
=

√
|det (g)|
k!

ϕµ1···µkεµ1···µn

⇒ (∗ϕ)µ1...µn−k
=

(−1)
s

k!
√
|det (g)|

εν1···νnϕν1···νkgµ1νk+1
· · · gµn−kνn .

In particular, for an n-form and a 0-form we have

∗ϕ =
(−1)

s√
|det (g)|

ϕ1···n,

(∗ϕ)1...n =
√
|det (g)|ϕ.
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4 Recall that some texts (including the first edition of this book) define the Hodge star by the relation A∧C =
〈∗A,C〉Ω, in which case these formulas are modified by a factor (−1)s.

Algebra-valued forms

p47, 3.3.5 Algebra-valued exterior forms: These are elements of a ⊗ ΛkV ∗. Since the elements of an algebra are
vectors, algebra-valued forms may be considered as vector-valued forms whose values can be multiplied. We will
reserve the term vector-valued forms for forms whose values are acted on by matrix-valued forms.

Projective lines

p62, 4.3.2 Projective spaces: RP1is also called the real projective line, and another way of viewing it is to consider
the map from each line (omitting the origin) to its slope, with the vertical line then being mapped to infinity, resulting
in RP 1 ∼= R∞ ∼= S1, where R∞ ≡ R ∪ {∞} denotes the algebra R along with a point at infinity:

R2 → RP 1 ∼= R∞
{(x,mx) ,m, 0 6= x ∈ R} 7→ m

{(0, y) , y ∈ R} 7→ ∞

Then by generalizing this reasoning we have CP1 ∼= C∞ ∼= S2; HP1 ∼= H∞ ∼= S4; and OP1 ∼= O∞ ∼= S8.

Combining spheres

p63, 4.3.3 Combining spaces: Some facts about combining spheres are:

• If the product X × Y = Sn then one of the spaces is a point

• The quotient Sn/Sn−1 = Sn ∨ Sn yields a wedge sum

• The suspension SSn = Sn+1

• The join Sn ∗ Sm = Sm+n+1

• The connected sum of n-dimensional manifolds M#Sn = M

n-chains

p68, 5.1.1 Simplices: an n-chain can also be defined as an element of Cn(X), defined to be the free abelian group
with basis the n-simplices σα. For 0-simplices, we also explicitly define ∂0σ = 0 .

Exact sequences

p71, 5.1.4 Chain complexes:

Note that for a chain complex, the image of ∂n+1 is contained in the kernel of ∂n; if these are in fact equal, the chain
complex is an exact sequence, defined to be any sequence of homomorphisms which sends the image of one object
to the kernel of the next. A short exact sequence is of the form

0 −→ N
φ−→ E

π−→ G −→ 0,

and any longer sequence is called a long exact sequence. φ is injective and π is surjective, so a short exact sequence
can be viewed as an embedding of N into E with G = E/N . For groups, a short exact sequence is called a group
extension, or “E is an extension of G by N .” Note that N is normal in E since it is the kernel of π, and thus
G ∼= E/N . A central extension is one where N also lies in the center of E.
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4 A group extension as above is sometimes described as “E is an extension of N by G.” A long exact sequence
is sometimes defined as any exact sequence that is not short, or as one which is infinite.

Homology examples

p73-74, 5.2.2 Examples:

• To be a bit more explicit, if σ is an n-simplex which encloses the hole and is therefore not a boundary, for every
integer a there is a homologically distinct n-chain aσ consisting of a copies of σ, with the orientation reversed
for negative a.

• In computing H2(S1) = 0, note that any torus mapped to the circle is the boundary of a solid torus also
mapped to the circle.

Points moved by tangent vectors

p85, 6.1.1 Coordinates: Another potential source of confusion is that xµ is also commonly used to refer to the
coordinates of a curve on M .

p86, 6.1.2 Tangent vectors and differential forms: In a given chart, any parametrized curve is defined to have tangent
v at t = 0 if its coordinates are Cµ (t) ≡ aµ + tvµ to first order in t; therefore the coordinates of the tangent vector
to C at any point ay be obtained by

vµ =
dCµ

dt
.

Anticipating later work, we should also explicitly say here that being able to write p+ εv allows us to write

v(f) = lim
ε→0

1

ε
[fp+εv − fp] .

Volume pseudo-form

p88, 6.1.2 Tangent vectors and differential forms: a volume pseudo-form exists on any differentiable manifold, in-
cluding those which are non-orientable.

The tangent to a curve

p93, 6.2.2 The differential and pullback: For the parametrized curve C : R→ Nn, we define the tangent to the curve
at t ∈ R to be

Ċ (t) ≡ dC

(
∂

∂x

)∣∣∣∣
t

=
∂Cλ

∂x

∂

∂yλ

∣∣∣∣
C(t)

,

which is also denoted dC(t)
dt and coincides with the Euclidean tangent to a curve if N = Rn.

Lie bracket and Lie derivative

p97-99, 6.3.2 The Lie derivative of a vector field:

• To distinguish from later derivation relations, note that Lv here is so far only a derivation on vect(M)

• We can also express the Lie derivative as lim
ε→0

1
ε

[
w |p − dΦε

(
w
∣∣
vp(−ε)

)]
.
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• In considering the second figure, it is helpful to note that vp(ε) = p+ εv.

p99-101, 6.3.3 The Lie derivative of an exterior form:

• The explanation of the depiction of 1-forms as “receptacles” is better placed in Section 3.2.1, The structure of
the dual space.

• Noting that we can derive a Leibniz rule over contraction Lv(ϕ (w)) = (Lvϕ) (w) + ϕ (Lvw)lets us arrive at
an expression for the Lie derivative applied to general tensors, viewed as real-valued mappings on vectors and
1-forms:

LvT (ϕ1, . . . , ϕm, w1, . . . , wn) = v (T (ϕ1, . . . , ϕm, w1, . . . , wn))

−
m∑
j=1

T (ϕ1, . . . , Lvϕj , . . . , ϕm, w1, . . . , wn)

−
n∑
j=1

T (ϕ1, . . . , ϕm, w1, . . . , Lvwj , . . . , wn)

In a holonomic frame, this yields the expression for the Lie derivative of a tensor in terms of coordinates, which
for consistency in indices can be written

LvT
µ1...µm

σ1...σn = vλ
∂

∂xλ
Tµ1...µm

σ1...σn

−
m∑
j=1

(
∂vµj

∂xλ

)
Tµ1...µj−1λµj+1...µm

σ1...σn

+

n∑
j=1

(
∂vλ

∂xσj

)
Tµ1...µm

σ1...σj−1λσj+1...σn .

From this we can confirm that the Lie derivative satisfies the Leibniz rule over the tensor product, and therefore
is a derivation of degree 0 on both the tensor algebra and the exterior algebra.

Exterior derivative coordinate expressions

p105, 6.3.5: The exterior derivative of a k-form: In a holonomic frame, we can obtain an expression for dϕ in terms
of coordinates

dϕ =
∑

µ0<···<µk

 k∑
j=0

(−1)
j ∂

∂xµj
ϕµ0...µj−1µj+1...µk

 dxµ0 ∧ · · · ∧ dxµk

=
∂

∂xµ0
ϕµ1...µkdxµ0 ∧ · · · ∧ dxµk

=
∂ϕI
∂xµ0

dxµ0 ∧ dxI ,

so that in terms of array components we have

(dϕ)µ0...µk
=

k∑
j=0

(−1)
j ∂

∂xµj
ϕµ0...µj−1µj+1...µk .

Generalized divergence

p105, 6.3.5: The exterior derivative of a k-form:

The generalizations of vector calculus can be extended to a pseudo inner product with signature (r, s) by defining
the divergence as (−1)s ∗ d(∗ϕ), which is then independent of both signature and orientation.
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p106, 6.3.5 The exterior derivative of a k-form: We can further generalize the divergence to k-forms ϕ by defining
the codifferential (AKA coderivative, exterior coderivative)

δϕ ≡ (−1)k ∗−1 d(∗ϕ)

= (−1)n(k+1)+s+1 ∗ d(∗ϕ).

The map δ : ΛkM → Λk−1M does not follow the Leibniz rule and so is not a derivation. However, we do have
δ2 = 0, so that we may write ∆ ≡ (d + δ)

2
= dδ + δd, which (usually for s = 0) is called the Laplace-Beltrami

operator (AKA Laplace operator, Laplacian, Laplace–de Rham operator); a form on a Riemannian manifold for
which it vanishes is called a harmonic form. For f ∈ Λ0M we have δf = 0 and ∆f = −div (∇f); despite the
sign, this last is often itself written ∆f ≡ ∇2f ≡ ∇ · ∇f , except on a flat Lorentzian manifold where it is denoted
�f = ∂µ∂µf ≡ −∂2

t f + ∆f , where � is called the d’Alembertian (AKA d’Alembert operator, wave operator, box
operator), whose spatial part ∆ is called the Laplacian (AKA Laplace operator). ∆f = 0 is then called Laplace’s
equation, while a fixed ρ ∈ Λ0M defines Poisson’s equation ∆f = ρ.

4 In the mostly minuses signature on a Lorentzian manifold, the operators above may be defined with a negative
sign. It is also important to remember that the sign of ∆ may change depending upon whether it is applied to
a function or a form.

If ϕ ∈ ΛkM and ψ ∈ Λk+1M so that d (ϕ ∧ ∗ψ) ∈ ΛnM , it is not hard to see that∫
∂M

(ϕ ∧ ∗ψ) =

∫
M

〈dϕ,ψ〉Ω− 〈ϕ, δψ〉Ω,

which means that if ϕ ∧ ∗ψ vanishes on ∂M (or ∂M = 0) we have
∫
M
〈dϕ,ψ〉Ω =

∫
M
〈ϕ, δψ〉Ω. In particular, for

f ∈ Λ0M and v[ ∈ Λ1M , we have ∫
∂M

f
(
∗v[
)

=

∫
M

〈∇f, v〉Ω + fdiv (v) Ω,

or for f = 1 and recalling from Section ?? that ivΩ = (−1)s ∗ (v[),∫
∂M

∗v[ =

∫
M

div (v) Ω

⇒
∫
M

div (v) Ω =

∫
∂M

ivΩ

=

∫
∂M

〈v, n̂〉 in̂Ω,

where n̂ is the unit normal vector to ∂M , the classical divergence theorem.

Cartan’s formula

p107, 6.3.6 Relationships between derivations: The last relation is sometimes called Cartan’s formula (AKA
Cartan’s magic formula).

Lie algebra of a Lie groups

p114, 7.2.1 The Lie algebra of a Lie group: The defining equation of left invariance is more clearly written dLg (A|h) =
A|Lg(h) = A|gh. Also, it’s helpful to remember that the isomorphism from g to TeG is as a vector space, with vector
multiplication dependent upon the vector fields determined by the elements of this vector space.

Baker-Campbell-Hausdorff formula

p116, 7.2.2 The Lie groups of a Lie algebra: As stated, the Baker-Campbell-Hausdorff formula is valid for the
exponential map for all associative algebras whose Lie commutator give the Lie bracket, but it is more general to
note that in terms of Lie brackets it holds for the exponential map of any Lie algebra. It is also important to note
that the series may not converge, limiting validity to a neighborhood of the identity.
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Linear algebra

p121, 7.3.2 Linear algebra:

• The adjoint is also known as the conjugate transpose

• In terms of the associated abstract linear transformation, the matrix rank is the dimension of its image and
the adjoint is defined by 〈v,Aw〉 =

〈
A†v, w

〉
.

• Recalling the section on combinatorial notations, det(A) is the volume change multiple associated with A
applied to an orthonormal basis, while tr(A) is then the volume change addition per unit t of exp(tA).

• The tensor product of hermitian / unitary matrices is hermitian / unitary

• Another basic but non-obvious fact: diagonalizable matrices commute iff they are simultaneously diagonalizable

• The spectral theorem is more completely described as saying that a matrix is normal iff it can be diagonalized
by a unitary similarity transformation; a real matrix is symmetric iff it can be diagonalized by an orthogonal
similarity transformation

• A similarity transformation causes the matrix representation of the form in the old basis to become
(
B−1v

)T (
BTϕB

) (
B−1w

)
=

vTϕw, where the matrices BTϕB and ϕ are called congruent.

Classification of Lie groups and algebras

p139, 7.5.2 Simple Lie algebras: The complex simple Lie algebra subscripts correspond to the Lie algebra rank,
whose definition we omit.

p140, 7.5.3 Classifying representations: In one form of classification used in physics, the finite-dimensional complex
irreps of a finite-dimensional Lie algebra g may be characterized or labeled using the concept of a Casimir element.
A Casimir element E is an element of the universal enveloping algebra U (g) of g, which as we recall is the associative
algebra which includes g as a subalgebra under the Lie commutator. A Casimir element E is constructed from a
basis of g and a nondegenerate bilinear form B (which E is dependent upon); B is also required to be “invariant”
(AKA Ad-invariant, ad-invariant, associative), meaning that

B ([u,w] , v) = B (u, [w, v]) ,

which if g is the Lie algebra of a connected Lie group G implies invariance under the adjoint rep, i.e. ∀g ∈ G

B (gAd (u) , gAd (v)) = B (u, v) .

The key property of a Casimir element is that it can be shown to be an element of the center of U (g) (commutes
with all elements), which by Schur’s Lemma means that under any finite-dimensional complex irrep ρ the Casimir
operator ρ (E) is a scalar multiple of the identity matrix C (ρ) I, where the scalar C (ρ) (which is often described as
the eigenvalue of the Casimir operator) is called the Casimir invariant, and may then be used to label the irrep.

4 ρ (E) denotes E constructed from the basis vector irreps under ρ. Note that the Casimir invariant for a given
B is not necessarily different for each irrep.

4 The terms Casimir element, Casimir operator, and Casimir invariant are often used interchangeably.
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Figure 3: The Casimir element is constructed from an invariant nondegenerate bilinear form B on g, and is an element of the
center of the universal enveloping algebra U (g). It maps to the Casimir operator ρ (E) under any finite-dimensional complex
irrep ρ of g, which by Schur’s Lemma is the identity matrix I multiplied by the Casimir invariant C (ρ).

Now, there exists an symmetric invariant bilinear form called the Killing form (AKA Cartan-Killing form) which
may be defined on any Lie algebra; it is nondegenerate iff the Lie algebra is semisimple (a fact called the Cartan
criterion), which makes it an invariant pseudo inner product 〈〉K on a real semisimple Lie algebra. For a real
semisimple Lie algebra, we may therefore choose a basis êj which is orthonormal under the Killing form, and which
can be used to construct a specific Casimir element called the quadratic (AKA second order) Casimir element

e2 ≡
∑
j

êj êj .

4 A Lie algebra including an invariant pseudo inner product is sometimes called a metric (AKA orthogonal,
quadratic, self-dual) Lie algebra.

Furthermore, for a simple Lie algebra, it can be shown that any symmetric invariant bilinear form is proportional to
the Killing form. Since the trace is a bilinear form on multiplied matrices, which can be verified to be symmetric and
invariant due to its cyclic property, we may therefore define the Dynkin index (AKA index, second order Dynkin
index) Y (ρ) of a finite-dimensional complex rep ρ by

tr (ρ (v) ρ (w)) = Y (ρ) 〈v, w〉K
⇒ tr (ρ (êj) ρ (êk)) = Y (ρ) δjk.

Taking the trace of the quadratic Casimir operator under a finite-dimensional complex irrep then yields a relationship
in terms of the vector space dimensions of g and the space acted on by the rep ρ:

tr

∑
j

ρ (êj) ρ (êj)

 = Y (ρ) dim (g)

= tr (C (ρ) I) = C (ρ) dim (ρ)

⇒ C (ρ) =
Y (ρ) dim (g)

dim (ρ)

4 Note that although for a simple Lie algebra any symmetric invariant bilinear form is proportional to the
Killing form, there may be other nondegenerate invariant bilinear forms which can be used to construct other
Casimir elements. In fact, it can be shown that the number of algebraically independent Casimir elements for
a simple Lie algebra is equal to its rank; these elements algebraically generate the center of the algebra. It can
also be shown that the negative of the Killing form is a (positive definite) inner product iff the real semisimple
Lie algebra is a compact real form, and that the Killing form is actually invariant under any automorphism of g.

The main physical application of all this is to label simple algebra reps by the eigenvalues of the rep of e2. In
particular, in quantum physics, the state of a physical system is associated with a vector in a complex Hilbert space.
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The laws of physics are equations which are postulated to be invariant under various symmetry transformations, in
particular those of SU(n) and SO(r, s), and hence their (simple) Lie algebras. The Hilbert space must therefore be
acted on by (“carry”) a rep of each of these Lie algebras, under which the state vector is transformed in a way which
leaves the laws invariant. Recalling Weyl’s theorem, these simple Lie algebras have completely reducible reps, and
the subspace of state vectors acted on by a component irrep is assumed to correspond to a single elementary particle,
which may then be labeled by its quadratic Casimir invariant.

☼ Note that for a connected G whose Lie algebra is g, 〈〉K is invariant under the adjoint rep, which for a matrix
group is a similarity transformation, i.e.

〈gAd (u) , gAd (v)〉K = 〈u, v〉K
=
〈
gug−1, gvg−1

〉
K
.

Thus for the groups SU(n) or SOe(r, s), which in gauge theories can be viewed as passive “rotations” (coordinate
transformations preserving an inner product) on the vector space being acted upon, the Killing form (and
therefore the trace) is a pseudo inner product on any g-valued form which is independent of these coordinates,
as one would naturally want to require. In fact, for these simple Lie algebras it is the unique invariant inner
product up to a choice of units (since all others are proportional).

Dirac matrices

p145-148, 8.1.3 Pauli and Dirac matrices: We know that our Majorana matrices act as a basis due to Pauli’s
fundamental theorem, whose extended form states that for even r + s = n, any two sets of n anti-commuting
elements of C(r, s) which square to ±1 according to the signature are related by a similarity transformation; this
means that any such elements can act as a basis for the vector space generating the Clifford algebra, since one of
them must. This theorem also holds for CC(n) for even n. Also, the complexified algebra CC(4) ∼= C(4) is sometimes
called the Dirac algebra, and the covariant Dirac matrices are sometimes defined for a general metric as γi ≡ gijγj ,
in which case they are not necessarily orthonormal and according to our definition are not Dirac matrices. Finally,
both SU(2) and SO(3) can be written exp

(
iajσj

)
since they are both compact connected Lie groups.

Clifford groups and rotations

p149, 8.2.1 Reflections:

In the figure, define v̂⊥ to be the unit vector perpendicular to u; then

u′ ≡ u cos
θ

2
+ v̂⊥ sin

θ

2

is a vector rotated by θ/2 from u. The combination of reflections using these two vectors yields a rotation of v by θ
in the u ∧ v plane:

Rθ (v) = u′uvuu′

= (u′u) v (u′u)
−1

Note that for infinitesimal θ, we then have
u′u = 1 + v̂⊥uθ/2

= exp (v̂⊥uθ/2) ,

so that an infinitesimal rotation corresponds to the exponential of a bivector.

p150, 8.2.2 Rotations:

• Distinctions are sometimes made between (special) Clifford groups and (S)Pin groups.

• Any element of the orthogonal group O (r, s) is a rotation and/or reflection, and the Cartan–Dieudonné
theorem states that any such transformation can be obtained as a product of at most r + s reflections.
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Spin group properties

p152, 8.2.3 Lie group properties: Pin(r, s) is sometimes defined as the Clifford product of “unit” vectors u with only
positive 〈u, u〉 = +1 . Then Spin(r, s) ends up being the double cover of SO(r, s)e, i.e. it is what we call Spin(r, s)e

for most cases: it is connected for r or s greater than one, and is simply connected if s = 0, 1 and r > 2 (or vice
versa).

Specific spin group elements

p155, 8.2.4 Lorentz transformations: In 3 dimensional space, if we start with the transformation instead of the basis,
we can express it as the exponential of a single 2-blade in the plane of rotation.

Spacetime spin reps

p156-7, 8.2.5 Representations in spacetime: The presentation is better expressed as results of the Dirac matrices,
rather than guesses which happen to match them.

Vectors in a plane as complex numbers

p159, 8.2.6 Spacetime and spinors in geometric algebra: The vectors in any space-like plane in a vector space
can be identified with the complex numbers via the representation of the isomorphism C0 (2, 0) ∼= C (0, 1) ∼= C
effected by ê1ê2 ≡ Ω → i, where i is the unit vector in C (0, 1) identified with the imaginary unit in C. A vector
v ≡ v1ê1 + v2ê2 ∈ C (2, 0) is represented by vE ≡ ê1v = v1 + v2ê1ê2 in the even subalgebra C0 (2, 0), and therefore
by vC = v1 + iv2 in C, where the choice of ê1 thus defines the real axis. Complex conjugation is then the reflection
across the imaginary axis ê1vEê1 = vê1 = ṽE = v1 + v2ê2ê1 = v1 − iv2 = v∗C, which is also reversion in C0 (2, 0). The
complex inner product is 〈vC, wC〉C = v∗CwC = ṽEwE = 〈v, w〉R. Note that multiplication by the imaginary unit in
C is represented by right Clifford multiplication by Ω in C0 (2, 0): vEΩ = ê1vΩ = v1Ω − v2 = iv1 − v2 = ivC. This
means that exponential rotations must also act from the right in C0 (2, 0), and since Ω anti-commutes with vectors,
both operations from the left reverse sign: eΩθvE = eΩθ (ê1v) = ê1

(
e−Ωθv

)
=
(
e−Ωθv

)
E

= e−iθvC.

The covariant derivative in terms of the connection

p169, 9.1.5 The covariant derivative in terms of the connection: The notation for partial derivatives is extended
to ∂vf ≡ va∂af . Another potentially confusing aspect is that when using a coordinate frame based on curvilinear
coordinates in Euclidean space, parallel transport is implicit in taking partial derivatives of vectors, resulting in the
expression ∂µeλ = eσΓσλµ.

Geodesics

p170, 9.1.7 Geodesics and normal coordinates: Expressing a geodesic as a parametrized curve Cµ(t) with tangent
vµ (t) ≡ Ċµ (t) in given coordinates, we can write

∇vv = vλ (∂λv
µ + Γµσλv

σ)

= ∂v (vµ) + Γµσλv
σvλ

=
d

dt

(
dCµ

dt

)
+ Γµσλ

dCσ

dt

dCλ

dt

=
d2Cµ

dt2
+ Γµσλ

dCσ

dt

dCλ

dt
= 0,

where the last line is called the geodesic equation, and in the third line we use the fact that the change of the
0-form vµ in the v direction is equal to the derivative of the function vµ (t) with respect to t.
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The covariant derivative on the tensor algebra

p175, 9.2.1 The covariant derivative on the tensor algebra: it is worth noting that for functions, ∇vf = Lvf = df .
It is also important to remember that we may raise and lower indices in a covariant derivative expression, since
∇cgab = 0⇒ gad∇cTab = ∇cT db, but we may not do so in a partial derivative expression: gad∂cTab 6= ∂cT

d
b.

Torsion

p183, 9.2.4 Torsion: More explicitly, the zero torsion expression [v, w] = ∇vw − ∇wv means that we can replace
partial with covariant derivatives in the usual expression for the Lie derivative of a vector field:

(Lvw)
a

= [v, w]
a

= vb∂bw
a − wb∂bva

�T= vb∇bwa − wb∇bva

Second Bianchi identity

p190-2, 9.2.7 Second Bianchi identity: This is also known as the differential Bianchi identity.

The Riemannian metric

p194, 9.3.1 The Riemannian metric:

• The metric and manifold are also described by the same terms used to characterize the signature, i.e. Lorentzian
manifold, Minkowskian metric, etc.

• The minimum length curve connecting two points is called a (Riemannian) geodesic. It can be shown that
for any tangent vector v on a Riemannian manifold there is a unique geodesic Cv(d) parametrized by distance
whose tangent is v; one can then define the exponential map by exp(v) ≡ Cv(1).

• The volume pseudo-form can be integrated over non-orientable regions, and it along with the volume element
and form are defined here relative to a specified metric.

The Levi-Civita connection

p197-8, 9.3.2 The Levi-Civita connection:

• It is clearer to directly note that the parallel transport of tensors just transports the arguments, so we have
(‖−C gab) v

awb = gab ‖C va ‖C wb, and hence ‖−C gab = gab, or ∇cgab = 0.

• ∇cgab = 0 implies that ∂cgab = Γabc + Γbac, and considering ∂c
(
gadgdf

)
= ∂c (δaf ) = 0, we arrive at the

complementary expression ∂cgab = −gadgbf∂cgdf = −
(
Γabc + Γbac

)
.

• The geodesics defined by the parallel transport associated with the Levi-Civita connection can be shown to be
exactly those defined by the metric.

• The connection determining the metric only requires M to be connected (not necessarily simply connected).
In special cases the metric may not be unique up to a scaling factor, e.g. if the manifold is a product space
there can be a scaling factor for each factor space.

• We will denote the Levi-Civita connection and related quantities with an overbar, e.g. Γ, ∇, and R.

• The relation Rcdab = Rabcd uses the first Bianchi identity for zero torsion.

• The derivation of the Koszul formula also uses the zero torsion relation ∇vw = ∇wv + [v, w].

• The Christoffel symbols are sometimes denoted { λµσ} or {µσλ }.
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Independent quantities and dependencies

p198, 9.3.3 Independent quantities and dependencies: From their definitions, the parallel transport and connection in
general determine each other. It can be shown that every manifold admits a connection, and every other connection
can be obtained by adding a frame-independent gl (Rn)-valued 1-form (tensor field of type (1, 2)) to it. A connection
with Hol(M) ⊆ O(r, s) may not be able to be defined on a given manifold, but if it can, then given this connection
(apart from special cases) it uniquely determines a compatible signature (r, s) metric (up to constant scaling factors).
The connection can then be written as the sum of the Levi-Civita connection Γ of this metric and a tensor K called
the contorsion tensor (AKA contortion tensor):

Γ = Γ +K

Kabc =
1

2
(Tbac + Tcab − Tabc)

⇒ Tabc = Kacb −Kabc

Note that K is anti-symmetric in its first two indices since T is anti-symmetric in its last two. The geodesic condition

(∇vv)
a

=
(
∇vv

)a
+Ka

bcv
bvc

=
(
∇vv

)a − Tbcavbvc
means that the geodesics of a connection with non-zero torsion coincide with those of the Levi-Civita connection iff
K and therefore T are both completely anti-symmetric, i.e. 3-forms.

4 If one uses the convention which reverses the lower indices of the connection coefficients, the contorsion tensor
does as well to yield Kabc = 1

2 (Tbac + Tcab + Tabc). In the literature one finds authors who use our convention
for the lower indices of the connection coefficients, but reverse the sign of the torsion tensor and/or halve it,
which sign reverses and/or doubles our expression for the contorsion tensor.

If the curvature is given over M , there is at most one metric (also apart from special cases, up to a scaling factor,
and for n > 2) whose Levi-Civita connection yields this curvature.

The divergence and useful relations

p200, 9.3.4 The divergence and conserved quantities: Recall that the divergence of a vector field u can be generalized
to a pseudo-Riemannian manifold of signature (r, s) by defining div(u) ≡ (−1)s ∗ d(∗(u[)). Also recalling that
iuΩ = ∗(u[) and (−1)sA = (∗A)Ω for A ∈ ΛnMn, we have d(iuΩ) = d(∗(u[)) = (−1)s ∗ d(∗(u[))Ω = div(u)Ω.

Note that both the coordinate- and metric-dependent expression for the divergence and the expression ∇aua (some-
times called the covariant divergence) in terms of the Levi-Civita connection are coordinate-independent and
equal to ∂aua in Riemann normal coordinates, confirming our expectation that for zero torsion we have

div(u) = ∇aua.

Recall however that the connection coefficients do not vanish in Riemann normal coordinates for non-zero torsion;
in this case we can use the contorsion tensor contraction Ka

ba = T aab to relate the pseudo-Riemannian divergence
to the covariant divergence by

div(u) = ∇aua − T aabub.

4 Note that the different symbols and names given here for the pseudo-Riemannian divergence versus the
covariant divergence are oftentimes not distinguished, since they are the same for zero torsion. The distinction
also vanishes if the torsion is completely anti-symmetric, i.e. if it leaves geodesics unchanged.
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Figure 4: The divergence measures the change in volume due to the flow. Here we assume zero torsion, and that the vector
field u has unit length at point p, and choose an orthonormal frame which aligns e2 with u. Each covariant derivative extends
a face of the volume, with their sum being proportional to the total change in volume. Note that the upper right corner is of
order ε4 and so can be neglected, and e.g. any component of ∇1u orthogonal to e1 leaves the volume unchanged, since a more
accurate depiction would include the volume with edge −εe1, where by linearity this component would be in the opposite
direction and thus cancel the volume change. Also note that non-zero torsion would reduce the top edge ‖εe2 εe1 by ε2T 1

1bu
b,

which must be added back by subtracting this component, matching the algebraic result.

Note that even in the presence of curvature, the continuity equation holds for the components of the coordinate-
dependent quantity J ≡ J

√
|det(g)|, since

∂µJ
µ = ∂tJ

t + ∂iJ
i

= ∂tJ
t +∇iJi = 0.

Coordinate and tensor divergences

p200, 9.3.4 The divergence and conserved quantities: Using previous results, we can derive many useful coordinate
dependent relations. Adopting the common abbreviation

√
g ≡

√
|det (gµν)|

and including torsion for completeness, we expand both sides of the coordinate divergence expression to get

∂λ
√
g =
√
g
(
Γµλµ − Tµµλ

)
,

which along with the expressions for the metric derivative from the section on the Levi-Civita connection yields

∂λ (
√
ggµν) =

√
g (gµνΓσλσ − gµνTσσλ − Γµνλ − Γνµλ)

⇒ ∂ν (
√
ggµν) = −√g (Γµνν − T νµν) .

From det (exp (g)) = exp (tr (g))⇒ ln (det (g)) = tr (ln (g)), we can take the derivative of the components upon which
it turns out that
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1

det (g)
∂λ (det (g)) = tr

(
g−1∂λg

)
= gµν∂λgµν

⇒ ∂λ
√
g =

1

2

√
ggµν∂λgµν

⇒ Γµλµ − Tµµλ =
1

2
gµν∂λgµν .

By considering the inverse matrix, we see that these expressions are also valid with gµν∂λgµν → −gµν∂λgµν . The
first line above actually applies to any variation; applying it to the Lie derivative and using its coordinate expression
gives us

Lu
√
g =
√
gdiv (u)

⇒ div (u) =
1

2
gµνLugµν .

If we consider an anti-symmetric tensor Fµν and a symmetric tensor Gµν , it is not hard to see that

∇νFµν − TλλνFµν =
1
√
g
∂ν (
√
gFµν)− 1

2
TµλνF

λν ,

∇νGµν − TλλνGµν =
1
√
g
∂ν (
√
gGµν) + ΓµλνG

λν ,

∇νG ν
µ − TλλνG ν

µ =
1
√
g
∂ν
(√
gG ν

µ

)
− ΓλµνG

ν
λ

=
1
√
g
∂ν
(√
gG ν

µ

)
− 1

2
∂µgλνG

λν + TλµνG
ν
λ .

The above expressions are more commonly presented with zero torsion, with ∇ν defining the “divergence” of the
tensor. It can also be shown (Frankel (1997) p. 365) that the “divergence” of an exterior k-form expressed as an
anti-symmetric tensor can be written in terms of the hodge star as

∇νFνµ2···µk ≡ gνµ1∇νFµ1···µk

= − (δF )µ2···µk

= (−1) n(k+1)+s (∗d (∗F ))µ2···µk .

Coordinate and tensor divergence theorems

p202, 9.3.4 The divergence and conserved quantities: The expression for the divergence theorem is∫
V

div(u)dV =

∫
∂V

iudV

=

∫
∂V

〈u, n̂〉dS,

where V is an n-dimensional compact submanifold of Mn, n̂ is the unit normal vector to ∂V , and dS ≡ in̂dV is
the induced volume element (“surface element”) for ∂V . If we choose an orthonormal frame with e1 = n̂ on ∂V , the
divergence theorem can be written ∫

V

div(u)dV =

∫
∂V

u1dS,

and if we can choose coordinates with x1 constant on ∂V and normal to it, the divergence theorem can be written∫
V

∂λ
(√
guλ

)
dnx =

∫
∂V

√
gdx1 (u) dn−1x

=

∫
∂V

u1√gdn−1x,
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where dnx ≡ dx1 ∧ · · · ∧ dxn and dn−1x ≡ dx2 ∧ · · · ∧ dxn.

Since the “divergence” of a tensor T with order greater than 1 is tensor-valued, and the parallel transport of tensors
is path-dependent, we cannot in general integrate to get a divergence theorem for tensors. In the case of a flat metric
and zero torsion however, we can choose coordinates whose coordinate frame is orthonormal, so that the frame is its
own parallel transport, i.e. ∇v (βµ) = 0. For e.g. a tensor T ab, we can then define a coordinate-dependent vector Jµ
for each index µ

Jµ ≡ T (βµ, )

⇒ (Jµ)
b

= Tµb

⇒ ∇vJµ�
R
= βµ∇vT

⇒ ∇b (Jµ)
b�R= ∇bTµb

⇒
∫
V

∇bTµbdV �R=

∫
V

∇b (Jµ)
b

dV

=

∫
∂V

Tµbn̂
bdS.

For arbitrary coordinates, the components of the coordinate frame are by definition constant, i.e. ∂v (dxµ) = 0; we
can therefore write √

gJµ ≡ √gT (dxµ, )

⇒ ∂ν (
√
gJµ)

ν
= ∂ν (

√
gTµν)

⇒
∫
V

∂ν (
√
gTµν) dnx =

∫
V

∂ν (
√
gJµ)

ν
dnx

=

∫
V

∇b (Jµ)
b

dV

=

∫
∂V

Tµbn̂
bdS.

This relation remains true in the presence of both curvature and torsion, however it is important to note that
∂ν
(√
gTµν

)
is not a “divergence” and Tµb = (Jµ)

b is coordinate-dependent. In the special case of an anti-symmetric
tensor under zero torsion, we can write ∫

V

∇νFµνdV =

∫
V

∂ν (
√
gFµν) dnx

=

∫
∂V

Fµbn̂
bdS.

Tensor densities

p202, 9.3.4 The divergence and conserved quantities: √g itself can thus be called a scalar density.

From the expressions in the preceding sections we also get

∂λ (T) =
√
g
W
∂λT +W

(
Γµλµ − Tµµλ

)
T

=
√
g
W
∂λT +

W

2
gµν∂λgµνT,

Lu (T) =
√
g
W
LuT +Wdiv (u)T

=
√
g
W
LuT +

W

2
gµνLugµνT,

∇λ (T) =
√
g
W∇λT,

where the last is due to the covariant derivative of the metric vanishing. In particular, this means that for zero
torsion the divergence of a vector density is

∇λJλ =
√
g∇λJλ

=
√
gdiv (J)

= ∂λJ
λ.
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4 A potential source of confusion is the use of the word “density” to indicate both an amount per unit area or
volume and the presence of the coordinate-dependent factor √g, which as in the current density typically reflects
the volume in question being a unit coordinate volume instead of metric volume.

Conserved currents and quantities

p200, 9.3.4 The divergence and conserved quantities: We previously saw that a Lorentzian conserved current div(J) =
0 does not imply a conserved quantity in the presence of curvature. If we are willing to consider coordinate-dependent
currents, at any given point we can choose Riemann normal coordinates, which allows us to recover a conserved
quantity at that point in those coordinates.

In the integral form, we may also identify a coordinate-dependent conserved quantity for a Lorentzian conserved
current by integrating over a space-like volume S with coordinates such that t ≡ x0 is constant on S and normal to
it, while x1 is constant on ∂S and normal to it:

0 =

∫
S

√
gdiv(J)d3x

=

∫
S

∂µJ
µd3x

= ∂t

(∫
S

Jtd3x

)
+

∫
S

∂iJ
id3x

= ∂t

(∫
S

Jtd3x

)
+

∫
∂S

J1d2x

Note that the coordinate-dependent factor √g in J =
√
gJ cannot be absorbed into either d3x or d2x to yield

a coordinate-independent quantity. More specifically, if J is either also normal to S or vanishes on ∂S, we have
∂t
(∫
S
Jtd3x

)
= 0. This also holds if S is infinite and J vanishes rapidly enough at spatial infinity.

<figure>

4 A conserved quantity as we have defined it is a quantity whose amount in a volume of space changes in time
by the net amount that crosses the volume boundary. This concept is not valid when div(J) = 0 in the presence
of spacetime curvature, but it is important to remember that this still means that

∫
∂V
〈J, n̂〉dS = 0, so that the

same amount of the quantity enters and exits any finite volume of spacetime; it is in this sense that the current
is “conserved.”

With regard to tensors, we can conclude from our divergence theorem variants that in the case of an orthonormal
coordinate frame under a flat metric and the Levi-Civita covariant derivative, we have a coordinate-dependent
conserved quantity for each component of a tensor, corresponding to a coordinate-dependent conserved current:

∇νTµν = 0

⇒ ∂0T
µ0 �R= −∇jTµj ,∫

∂V

Tµbn̂
bdS�R= 0

In the special case of an anti-symmetric tensor and the Levi-Civita covariant derivative we also have a divergence
theorem, and therefore a coordinate-dependent conserved current for each component:

∇νFµν = 0

⇒
∫
∂V

Fµbn̂
bdS = 0
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Sectional curvature

p204, 9.3.5 Ricci and sectional curvature: The sectional curvature is defined to vanish for equal arguments, where
otherwise it would be undefined, since it depends upon a plane.

p205, 9.3.5 Ricci and sectional curvature: It is on a Riemannian manifold that the Ricci tensor and Einstein tensor
can be diagonalized. For each value of b in an orthonormal frame in the relation ∇aG

ab
= 0, this relation expressed

in terms of the Riemann curvature tensor can be seen to be equivalent to the second Bianchi identity. It is for a
general Lorentzian metric that there is no conserved quantity which can be associated with the vanishing divergence
of the Einstein tensor.

p206-9, 9.3.6 Curvature and geodesics: A more specific justification of the assumption that Ř(e1, e2)~e2 is parallel
to e1 is to note that if we drop it, the only impact is that of an e3 component on the area calculation; to address
this, a more accurate picture would be to extend the area to include all four quadrants defined by both negative and
positive values of e1 and e3, in which case any change in area due to an e3 component cancels. Also, the ratio of
acceleration to initial length (and area) is better denoted L̈

L

∣∣∣
t=0

.

p210, 9.3.7 Jacobi fields and volumes: The expression D2
tJ = −K(J, φ̇) depends on the assumption that Ř(e1, e2)~e2

is parallel to e1; dropping this assumption yields the expression in terms of curvature.

Gauge group

p218, 10.1.1 Matter fields and gauges: The infinite-dimensional group of maps γ−1 under composition is sometimes
called the global gauge group, with G or its reps then called the local gauge group.

Gauge potential and field strength

p218, 10.1.2 The gauge potential and field strength: The covariant derivative for a matter field is sometimes called
the gauge covariant derivative. The expression for Dµ

~Φ is not coordinate-dependent, and can therefore also be
written using an abstract index. The definition Γ̌ ≡ −iqǍ is the convention with a mostly pluses metric signature;
with a mostly minuses signature the sign is reversed. However, one also finds this definition in terms of an elementary
charge e ≡ ±q, which may be positive or negative depending on convention, again reversing the sign. The gauge
potential is also called the four-potential, or four-vector potential.

p221, 10.1.3 Spinor fields: In the figure, note that the field components shown at p+ εv are those of the field value at
p applied to the frame at p+εv, i.e. the top right field vector depicted would be more precisely written φα|p eα|p+εv;
in particular, this quantity is unrelated to the value of the field φα|p+εv.

Defining bundles

p223, 10.2.1 Fiber bundles: If F is given additional structure, fi must remain an isomorphism with respect to this
structure.

Gauge transformations on frame bundles

p238, 10.3.4 Gauge transformations on frame bundles: Automorphism gauge transformations are a subset of neighborhood-
wise gauge transformations since these neighborhood-wise transformations are not necessarily consistent in Ui ∩ Uj .

Horizontal equivariant forms and automorphisms

p245, 10.3.6 Vertical tangents and horizontal equivariant forms: The derivation of the transformation of ~ϕi under an
automorphism gauge transformation is more explicitly written
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~ϕ′i = σ∗i
(
γ−1

)∗
~ϕP

=
(
γ−1σi

)∗
~ϕP

=
(
γ−1
i σi

)∗
~ϕP

= σ∗i
(
γ−1
i

)∗
~ϕP

= σ∗i γ̌i~ϕP

= γ̌i~ϕi,

where we have used (g(h))
∗
ϕ = h∗ (g∗ϕ) twice and in the penultimate line we used the equivariance of ~ϕP .

Connections on bundles

p247, 10.4.1 Connections on bundles: to be clear, the principal connection 1-form is required to preserve horizontal
vectors under right translation; such a principal connection 1-form exists on any principal bundle.

Characteristic classes

p262, 10.5.2 Characteristic classes: the cohomology coefficient ring is commutative and unital, and the values 0 and
1 are the ring zero and unity.

Combining bundles

p263, 10.5.3 Related constructions and facts: The tensor product of two vector bundles with the same base space
(E,M,Km) and (E′,M,Kn) is another vector bundle

(E ⊗ E′,M,Kmn).


